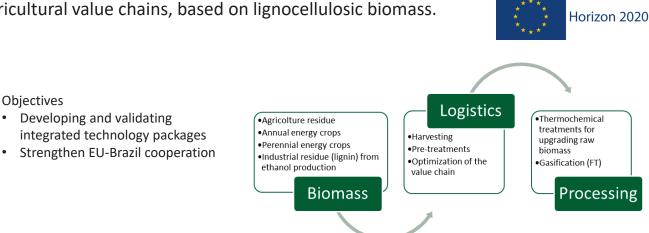


Towards advanced biofuels production from energy crops; Gasification and gas cleaning

Evert Boymans, B.J. Vreugdenhil


2020

•

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 744821.

The **BECOOL** project

BECOOL is a research and innovation project to promote the cooperation between EU and Brazil in the development of advanced biofuels (especially kerosene), from sustainable agricultural value chains, based on lignocellulosic biomass.

BECOOL

Thermochemical conversion of biomass

Different biomass and bio residues are considered for gasification and upgrading (100 MW)

The two main conversion strategies towards kerosene (FT liquids):

A: Pyrolysis followed by EF gasification, gas cleaning/upgrading, FT-S

B: Solid biomass gasification in Fluidized Bed Gasification, gas cleaning/upgrading, FT-S

B1: Gasification -> high temperature (cat.) cracking -> gas cleaning B2: Gasification -> tar scrubbing -> gas cleaning

- Process feasibility study;
 - Experimental validation
 - Setup and benchmarking of Aspen plus models
 - TE analysis of most promising routes

Biofuels via gasification

Route B2; Applying CFB gasifier (MILENA)

Mass/energy balance

• Overall energy efficiency ~45%, carbon conv.~ 34%

- Wood; 18 MJ/kg, Liquid Product; 43 MJ/kg
- Production costs; IEA (2019)*: 21-40 €/GJ
- Shown approach on high end of that range (part of project scope)

What are (technological) challenges with biomass other than wood? This presentation: Gasification results and S removal

* IEA report (2019) Advanced Biofuels – Potential for Cost Reduction

BECOOL biomass

Eucalyptus, Sorghum and Giant Reed were grown and harvested as part of the BECOOL project by the University of Bologna

Eucalyptus (EUC)

Biomass Sorghum (SO)


```
Giant Reed (GR)
```

Giant Reed pretreatment for gasification

 Shredding (cannot be fed; low density and possible bridging)

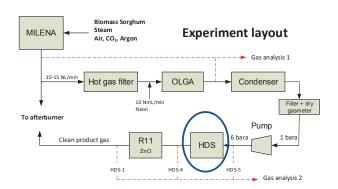
2. Pelletisation

Grinding
 (high density particles)

As received moisture content 23 wt%, final ground pellets 9 wt% (fed to gasifier)

Feedstock analysis

Feedstock proximate/ultimate analysis pretreated feedstock


		EUC	SO	GR
LHV	[MJ/kg], ar	16.0	15.8	15.8
LHV	[MJ/kg], daf	17.8	17.4	18.6
Volatile content	[%], dry	77.8	74.3	74.1
Ash content	[%], dry	1.5	5.0	5.6
Moisture	[%], ar	7.9	3.8	8.5
с	[%], dry	47.4	44.8	46.3
н	[%], dry	6.1	5.9	5.8
0	[%], dry	44.0	41.8	42.1
N	[%], dry	0.40	0.90	0.60
S	[%], dry	0.034	0.10	0.19
Cl	[%], dry	0.13	0.15	0.36

- Very similar heating value and CHO composition
- Much ash in SO and GR, resp. 5.0 and 5.6%
- Up to 6x more Sulfur in SO and GR than EUC

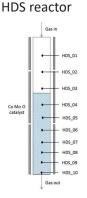
Experiment setup

How does the sulphur removal (HDS-ZnO) perform with high-S product gas?

- SO gasification by lab-MILENA (30 kW), 1-day experiment
- SO product gas is cleaned, dried and compressed prior to HDS-ZnO

8

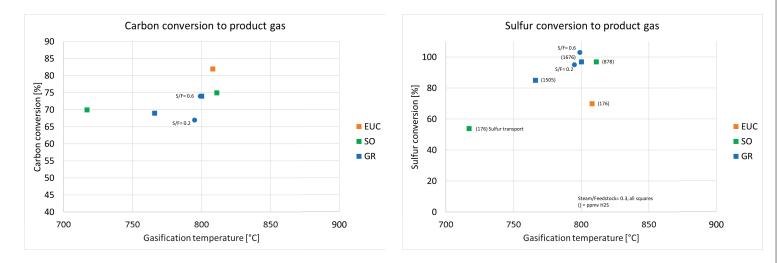
The HDS reactor


Organic-S (thiophenes, mercaptans) are converted by HDS to $\rm H_2S/COS,$ which is adsorbed by ZnO

Mostly thiophenes and mercaptans, heavier S/N-HCs captured upstream

Unsat. HCs are hydrogenated (main reaction, high exotherm >100°C), ethylene good activity indicator

Lessons from the past (SNG production);


- HDS temperature: 300-500°C
 - High(est) T required for complete thiophene conversion
- Higher overall pressure increases conversion (1-6 bar tested)
 No "extra" H₂ required
- Steam addition decreases conversion (dilution)
- More catalyst improves conversion

Conditions: 6 bara, 350-500°C, 10-15 NL/min, T: 450°C, GHSV: 300 h⁻¹.

9

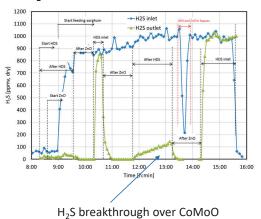
(Steam) gasification results

- Carbon conversion 70-80%, higher CC at higher T, rest to combustor.
 - Quasi equilibrium due to heat loss at small scale, real CC will be somewhat higher
- >90% of S ends up in product gas for SO and GR.

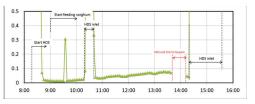
S-removal over HDS-ZnO

Sorghum gasification, 1-day experiment

S-analysis via gas bags and S-GC


		Sorghum	
		Upstream HDS	Downstream HDS-ZnO
H2	[vol%]	12	6
C2H4	[vol%]	4.8	<< 0.048
H2S	[ppmv]	956	0.71
COS	[ppmv]	34	0.08
Thiophene	[ppmv]	9.2	0.1 1.34
Methyl mercaptan	[ppmv]	106	<0.05 0.06

Reference; beech wood	
Upstream HDS	Downstream HDS-ZnO
29	25
2.9	0
121	<0.05
6	<0.05
10	<0.05
2	<0.05


- Much mercaptan in SO gas, facile conversion in HDS
- Thiophene is not removed completely and removal decreases over time (99% to 85%)
- Reason; Low H₂ concentration and very high S concentration (H₂S and trace organic-S)
- \rightarrow Compared to beech wood (H₂: 29% vs 12%, H₂S: 212 ppm vs 956 ppm)

HDS performance

H₂S concentration over HDS reactor

C₂H₄ downstream HDS reactor

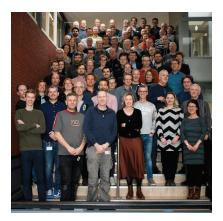
 $\rm C_2H_4$ conversion decreases in parallel with thiophene conversion

- Lower cat activity due to S saturation
- · Activity decrease is caused by S saturation of catalyst bed

11

Conclusions

Successful pretreatment and gasification of EUC, SO, GR


- Nature of SO, GR makes it require pretreatment (for lab-scale)
- Carbon conversion in the range of 70-80% at 800 $^\circ\mathrm{C}$
- Temperature can be increased to improve CC (decrease char to combustor)
- SO and GR more challenging for downstream gas cleaning due to (S/N-) impurities

HDS can be applied for organic-S conversion in SO/EUC gas

- However, some additional research is required
 - Higher overall/H₂ pressure
 - Upstream bulk H₂S/COS removal or even ethylene (through ethylene aromatization), increase H2?
- Is HDS required at all i.c.w. high T reforming?

The TNO biomass group, Petten, NL

• Special thanks to Herman Bodenstaff, Dennis Slort, Marco Geusebroek and Arnold Toonen.

Thank you for your attention!

www.becoolproject.eu info@becoolproject.eu @projectbecool

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 744821.

15